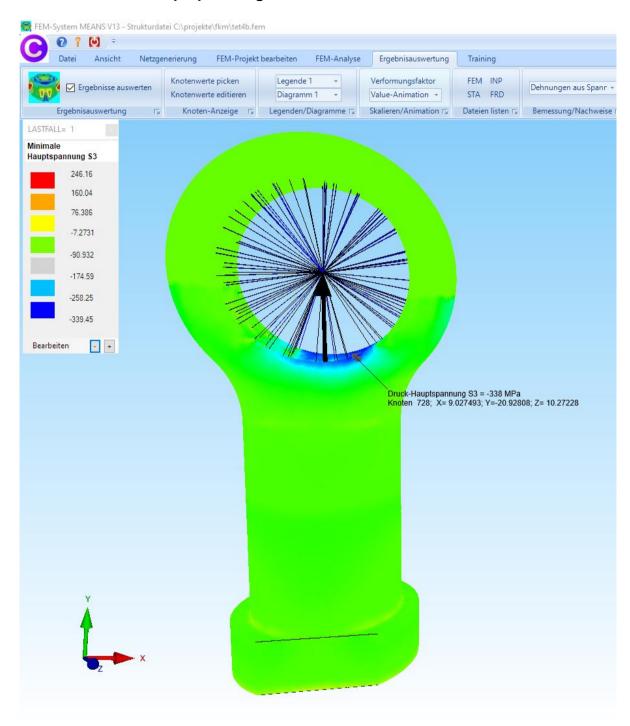
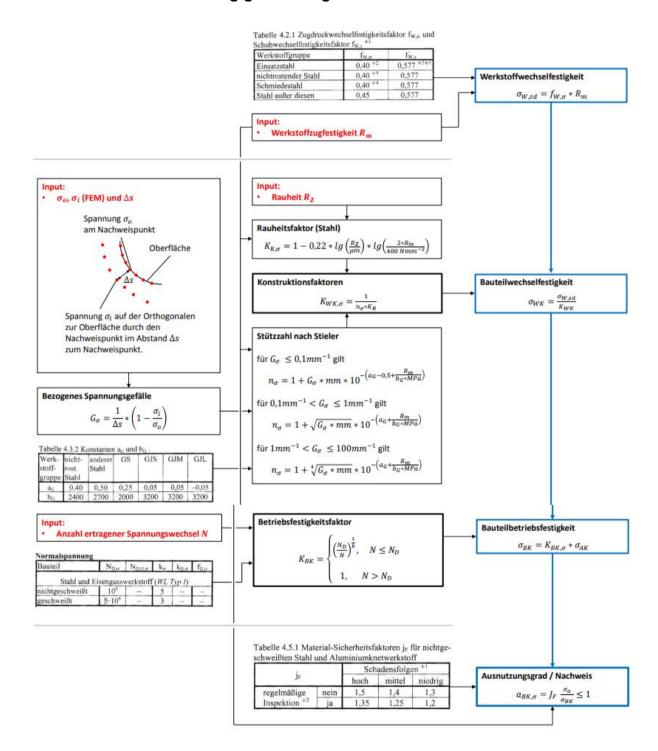

Kapitel 40 Teil2: Gelenkkopf-Ermüdungsanalyse nach der FKM-Richtlinie


Ein Gelenkkopf aus Schmiedestahl CK 60 wird mit einer Zugbelastung von 90 kN belastet. Es soll ein Ermüdungsfestigkeitsnachweis nach der vereinfachten FKM-Richtlinie sowohl für geschweißte als auch für nicht geschweißte Bauteile durchgeführt werden und Darstellung der Ausnutzungsgrad-Verteilung am FEM-Modell.

Maximale Zug-Hauptspannung S1 am Knoten 6235



Minimale Druck-Hauptspannung S3 am Knoten 728

1.) Vereinfachter Ermüdungsfestigkeitsnachweis nach der FKM-Richtlinie für

- nicht geschweißte Strukturstellen
- örtliche Spannungen
- ein Einstufenkollektiv
- nur eine Schädigungsrelevante Normalspannungskomponente
- kerbschärfenunabhängigen Rauhigkeitseinfluss

1.1) Werstoffwechselfestigkeit Ow,zd

$$\sigma_{W,zd} = f_w * R_m = 0.4 * 690 \text{ N/mm}^2 = 276 \text{ N/mm}^2$$

mit

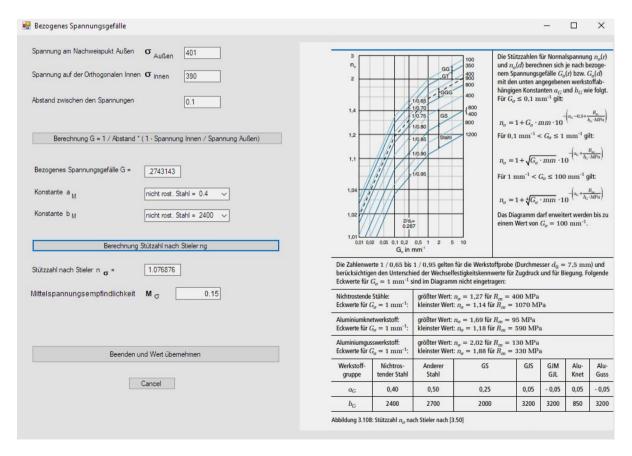
Zugdruckwechselfestigkeitsfaktor für Schmiedestahl $f_w = 0.4$ Werkstoffzugfestigkeit $R_m = 690 \text{ N/mm}^2$ für CK 60

1.2) Bauteilwechselfestigkeit Owk

$$\sigma_{WK} = \sigma_{w,zd} / K_{WK} = 276 \text{ N/mm}^2 / 1.0813 = 255 \text{ N/mm}^2$$

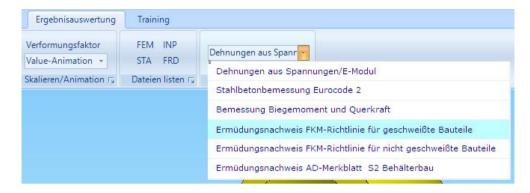
mit

Konstruktionsfaktor $K_{WK} = 1 / K_R * n_{st} = 1 / (0.853 * 1.1075) = 1.0813$

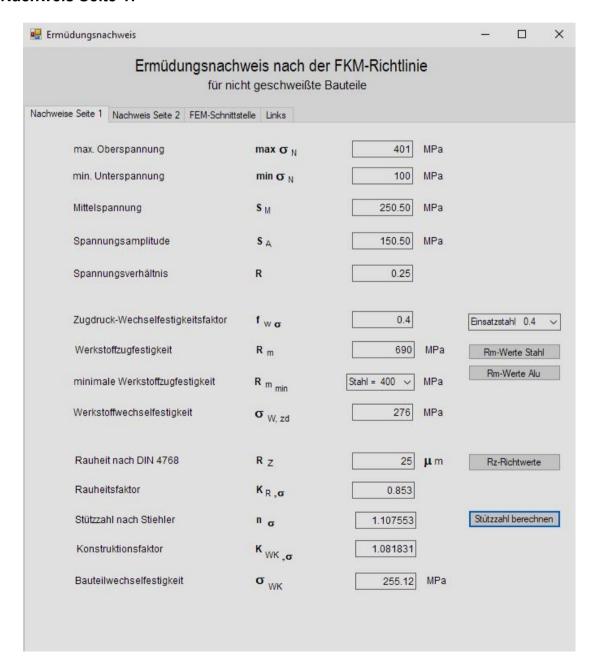

Rauheitsfaktor
$$K_R = 1 - 0.22 \text{ lg}(R_z) * \text{lg}(2*R_m / 400)$$

= 1 - 0.22 * 1.3979 * 0.5378 = 0.853

Rauheitstiefe $R_z = 25 \mu m$


Stützzahl nach Stieler n_{st} = 1.1075 (mit G nach Stieler > 0.1 mm⁻¹ und < 1 mm⁻¹)

Spannungsgefälle G = 1 / \triangle S * (1 - σ_i / σ_a) = 0.2743 mm⁻¹


mit \triangle s = 0.1mm, σ_i = 390 N/mm², σ_a = 401 N/mm²)

Die gleichen Ergebnisse erhält man ohne Formel-Berechnungen mit dem FKM-Nachweis von MEANS V14. Wählen Sie das Register "Ergebnisauswertung" und Menü "Ermüdungsnachweis FKM-Richtlinie für nicht geschweißte Bauteile".

Nachweis Seite 1:

1.3) Bauteildauerfestigkeit OAK

$$\sigma_{AK} = \sigma_{WK} * K_{AK} = 255 \text{ N/mm}^2 * 0.8505 = 217 \text{ N/mm}^2$$

mit

Spannungsverhältns R =
$$(\sigma_m - \sigma_A) / (\sigma_m + \sigma_A) = 0.25$$

Mittelspannung σ_m = 250 N/mm² und Spannungsamplitude σ_A = 150 N/mm² Mittelspannungsempfindlichkeit M $_{\sigma}$ = 0.35 * 0.001 * 690 N/mm² - 0.1 = 0.1415 Mittelspannungsfaktor K_{AK} = 0.8505 (mit R => -0 und R < 0.5)

1.4) Bauteilbetriebsfestigkeit OBK

$$\sigma_{BK} = \sigma_{AK} * K_{BK} = 217 \text{ N/mm}^2 * 1.5849 = 343 \text{ N/mm}^2$$

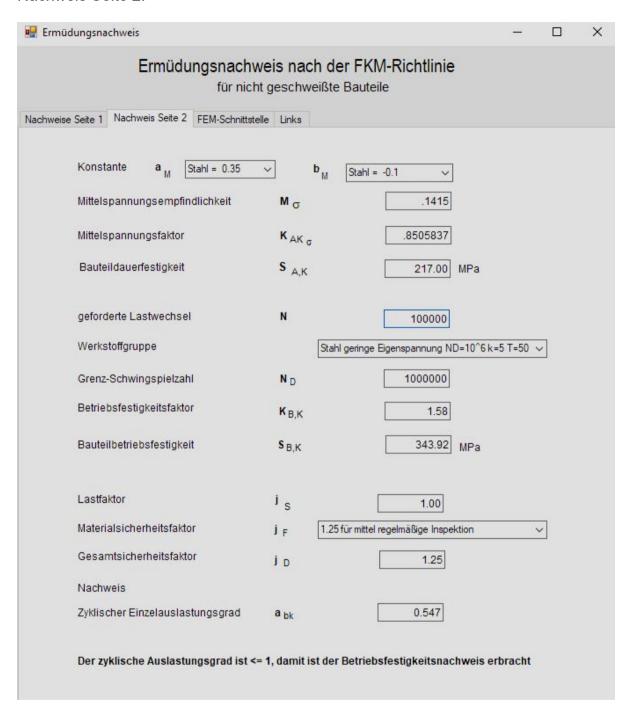
mit

Anzahl geforderter Lastwechsel N = 100 000

Lastwechsel N_D für nichtgeschweißten Stahl = 1 000 000 und k = 5

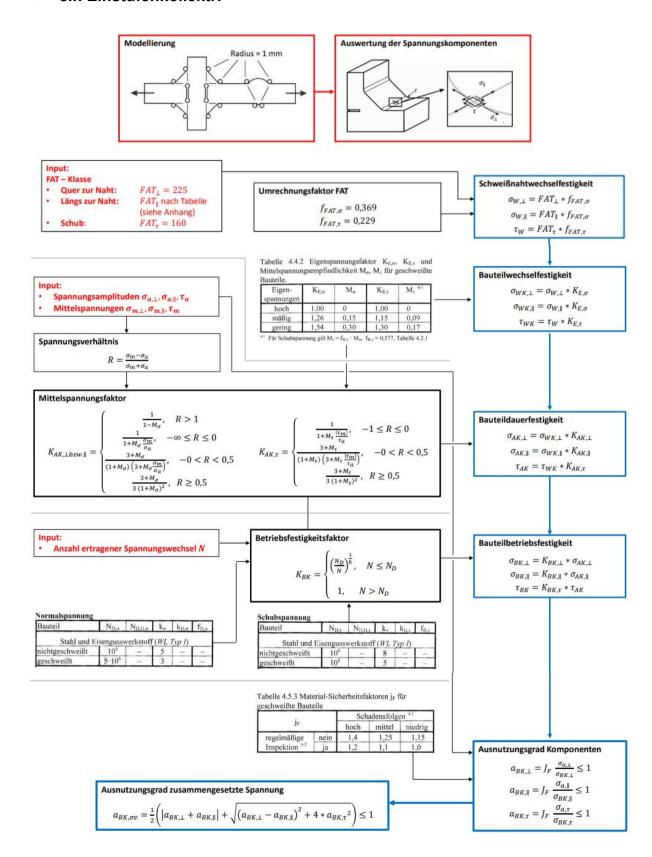
Betriebsfestigkeitsfaktor $K_{BK} = (N_D/N)^{1/k} = (1\ 000\ 000\ /\ 100\ 000)^{0.2} = 1.5849$

1.5) Ausnutzungsgrad **a**_{BK}


$$a_{BK} = J_F * \sigma_A / \sigma_{BK} = 1.25 * 150 \text{ N/mm}^2 / 343 \text{ N/mm}^2 = 0.547$$

mit

Material-Sicherheitsfaktor J_f für mittel regelmäßige Inspektion = 1.25


Der zyklische Ausnutzungsgrad $a_{\rm BK}$ ist < 1 und damit ist der Betriebsfestigkeitsnachweis für 100 000 Lastwechsel für nicht geschweißte Bauteile erbracht.

Nachweis Seite 2:

2.) Vereinfachter Ermüdungsfestigkeitsnachweis nach der FKM-Richtlinie für

- geschweißte Strukturstellen
- örtliche Spannungen
- ein Einstufenkollektiv

2.1) Schweißnahtwechselfestigkeit σ_{w}

$$\sigma_W = FAT_{Längs} * f_{FAT} * f_t = 100 * 0.397 * 1.1 = 40.7 N/mm^2$$

mit

FAT-Klasse mit Zugbelastung und Längsnaht = 100 N/mm^2 Umrechnungsfaktor $F_{FAT} = 0.397$ Dickenfaktor F_t für Bleche <= 10 mm = 1.1

Nachweis Seite 1:

							-		×
	Ermü	dungsnachv für ges		i <mark>ach der</mark> Ste Bauteil		ntlinie			
Nachweis Seite 1	Nachweis Seite 2	FEM-Schnittstelle	Links /	Video					
max. Oberspannung		ma	xσN		401	MPa			
min. Unterspannung		mi	min σ_N		100.00	MPa			
Mittelspannung		S N	S M		250.50	MPa			
Spannungsamplitude		S ,	L 2		150.50	MPa			
Spannungsverhältnis		R			0.25				
gefordert	geforderte Lastwechsel				100000				
Werkstof	Werkstoffgruppe		Stahl geringe Eigenspannung ND=1 ∨				Lin	k 3	
Grenz-Sc	Grenz-Schwingspielzahl				1000000				
Neigung	Neigungsexponent				5				
Konstruk	Konstruktionskennwerte		г	100 Längs zu	ır Naht ~		Lin	k 1	
Umrechn	nungsfaktor			0.37 für Zug/	'Druck ~				
Dickenfa	ktor	f t		1.1 für Blech	ie <= 10mr ∨				
Randsch	ichtfaktor	ĸ,	/		1.00				
Schutzsc	hichtfaktor	K ₅	;		1.00				
Spannun	gs-Dehnungsfakt	or K ₁	NL,E		1.00				
Schweiß	naht-Wechselfesti	gkeit S \	V		40.70	MPa			

2.2) Bauteilwechselfestigkeit Owk

$$\sigma_{WK} = \sigma_{W} * K_{WK} = 40.7 \text{ N/mm}^2 * 1.54 = 62.68 \text{ N/mm}^2$$

mit

Eigenspannungsfaktor für geringe Eigenspannung K_{WK} = 1.54

2.3) Bauteildauerfestigkeit σ_{AK}

$$\sigma_{AK} = \sigma_{WK} * K_{AK} = 62.68 \text{ N/mm}^2 * 0.73 = 45.47 \text{ N/mm}^2$$

mit

Spannungsverhältnis R = 0.25Mittelspannungsfaktor $K_{AK} = 0.72$

2.4) Bauteilbetriebsfestigkeit σ_{BK}

$$\sigma_{BK} = \sigma_{BK} * K_{BK} = 45.47 \text{ N/mm}^2 * 1.58 = 72.06 \text{ N/mm}^2$$

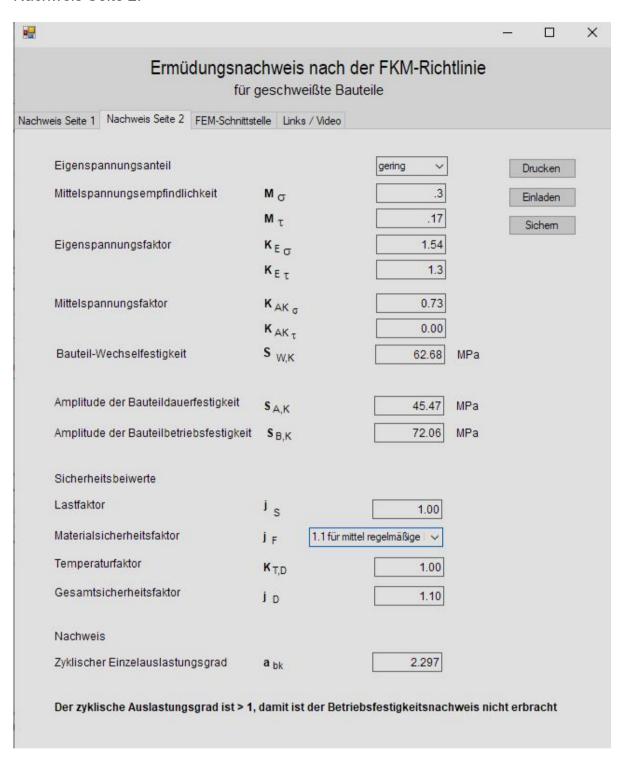
mit

Anzahl geforderter Lastwechsel N = 100 000

Lastwechsel N_D für nichtgeschweißten Stahl = 1 000 000 und k = 5

Betriebsfestigkeitsfaktor $K_{BK} = (N_D/N)^{1/k} = (1\ 000\ 000\ /\ 100\ 000)^{0.2} = 1.5849$

2.5) Ausnutzungsgrad **a**_{BK}


$$a_{BK} = J_F * \sigma_A / \sigma_{BK} = 1.1 * 150 \text{ N/mm}^2 / 72.06 \text{ N/mm}^2 = 2.29$$

mit

Material-Sicherheitsfaktor J_f für mittel regelmäßige Inspektion = 1.1

Der zyklische Ausnutzungsgrad $a_{\rm BK}$ ist > 1 und damit ist der Betriebsfestigkeitsnachweis für 100 000 Lastwechsel für geschweißte Bauteile nicht erbracht.

Nachweis Seite 2:

